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Holonomic systems with two-sided constraints represent a well-known section
of analytical mechanics whereas holonomic systems with one-sided {or nonhold-
ing, releasing) constraints have not been sufficiently investigated. In
this paper the Hamlilton-Ostrogradskii integral variational principle 1is
established for holonomic systems with one-sided constraints and is proved
to be necessary and sufficient.

1, We shall consider a holonomic mechanical system under the action of
potential forces. We shall assume that the generalized coordinates ¢,,...,¢,,
Qasy s+ 03¢, 8re chosen such that the one-sided constraints applied to the
ays‘:em are determined as follows:

arg 00 e o 0y >0 (1.1)

Such a choice of the generalized coordinates 1s always possible,

We shall consider the real path of the system g4 (¢),..., g,(2) during
the interval of time [t,, 7]. In the most general tases this path can con-
sist of sections of r+1 differsnt types, where r 4is the number of differ-
ent combinations of the indices m+1,..., n which is obviousaly equal to
&2-e,

The type of the motion on a section, depends on which of the coordinates
(1.1) are equal to zero on that section. We shall assign an index to each
possible type of the sections of motion. where the index sero is-given to
the section in which 811 ¢, >0 (k=m+1,...,n). To each number a cor-
responds the totality J, of the indices m+1,..., n, such that if ic=J,
gx = 0 on each glven sectlon of type a .

It is assumed that during the interval of time [¢,, the system goes
from one section of motion to snother a finite number (¥) of times. Let

L =T+ 0 bea Lagrange function. The equations of motion of the system on
a section of type o have the form

d oL dL <]": 1,...,m \
dr dq; T 09q; T j does not belong to J,)
d 9L oL
— A — e = Mk 1.2
a3 g M (keEJ,) (1.2)
g =0 (ke T,

with the conditlon
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hip >0 (k7)) (1.3)
where a dot represents differentiation with respect to ¢ .

The transition from one section of motion to another can be of two types:
with or without an impulse. An impulse can occur, if a system which did not
have some one-sided constraint again acquires one. For instance, let the
system pass at time ¢, from a sectlion of type zero to a section of the first
type for which g7.4,= 0 . If ¢n+y (¢) >0, there won't be an impulse; on the
other hand if ¢, (f,) <0, there will be an impulse [1]: the velocities
%, * (L =1, eee, n,)1 have a discontinuity whereupon g¢°,,, takes on instan-

aneously a nonnegative value,

Thus, when we pass from one section of motion of type o to another of
type g the variations of the velocitles g¢; (£ = 1, ..., n) can be continu-
ous or have a discontinuity. If at the ms%ant of the impulse the system
leaves the constraint g¢p,=0, k&J, —J xJ; and acquires the constraint
g =0, k&Jg—J, xJg then at the instant of the impulse (*)

Sqp =0 (ke Jg) T(14)

The values of the velocities after the impulse satisfy the equations of
the impulse theory

oL oL =1, ...,m
(3(15' )0 = (aqj' )1 (i does not belong to Jg) (1.5)

The indices O and 1 in (1.5) show that in ; we have the values of
the velocities before and after the impulse.

We shall assume that the constraints applied at the time of the impulse
are retained, then there 1s a sufficient number of Equations (1.5) to deter-
mine the velocities after the impulse. If this were not true, it would be
necessary to make complementary assumptions on the behavior of the system
after the impulse [2].

Together with the real path, we shall consider the totality of the devious
paths, conslsting of configurations permissible by the constraints and infi-
nitely close to the real path [3]

qu{t) +8q1(t), ...y g (8) 4 89y (8)

where the 8¢;(j=1,...,m) and those of the 8¢y(k=m41,...,n), for which
on the real path g¢,> O , are arbitrerily chosen, and 8¢, > 0 for the ¢, which
are zero on the red path. Among the totality of the devious paths we shall
choose those which coincide with the real path at instants ¢, and T 1in
such & way that '

89; (o) =0,  8¢;(T)=0 (i=1,...,n) (1.6)
Let's consider the Hamiltonian action integral for the interval [¢., T]
T
S = S Ldt (1.7)

tn
We shall compute the increment of the action S when we pass from the

real path to a devious path with the linear approximetion accuracy with
respect to 4&g,, 8g,', i.e. we compute the varlation

T N41 fs+1
6S=6$Ldt=6§] S Ldi (1.8)
te s=0

8

where the ¢,,..., t, are the time instants at which the transitions from
one section of motion to the other ocour, whereupon ¢,,,= 7 . Since the
instants at which the system passes from one section of motion to another

can be varied, we should apgly to the integrals in (1.8) the formula of the
nonsynchronous variation [3

*) 4 % B denotes the intersection of the ensemble 4 , 5 .
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N1 sy

foeven o5= 3 (§ oLart o, o, — L1, 50,)
Nyp 570 /
Ry sty 841 — L1 B2) =0

§=0
since the time (T — ¢,) 18 fixed. We have
Nt1ls41 n

5 = S% Ss 112-11 (ai—,.L' 8q; +%§ qu):‘ dt

Integrating by parts we get

N+1 =n oL fs+1  N+1 n ln oL
5= 3 N b + 3D S (__—-c_l_fa_L_)ﬁqidt
5=0 i=1 9gi tg o izh b V0% dt 9g;

8

The first term of this sum is equal tc zero on the basis of Equations
(1.4), (1.6) and impulse equations (1.5).

Teking into consjderation, that the sections of the motion have different
types, we get r N1 teiq

s5=—3 2 X | méga

a=0 s=0KSJy tg
Since A, >0, 89, >0 (k& J ), then
85 <0 {1.9)

If the real path on all 1ts sectlons i1s comparable to devious paths of
similer types, 1.e. if the conditions

8¢, =0 (kesJy) (1.10)
are fulfilled, we find §§ = 0.

Thus the necessity of the following principle is proved. The first vari-
ation of the Hamiltonlan action integral 1s nonpositive, if the devious paths
colnciding with the real path at the initial and final inastants of time ¢,
and T and for which the conditions (1.1) are fulfilled are comparable to
the real path. The Hamiltonlan actlon integral has a stationary value if we
ggn a}.so cc)mpare to the real path the devious paths which satisfy the condi-

on (1.10).

In order to prove that this principle is sufficient we shall deduce from
it the equations of motion. The problem consists in find the.necessary
conditions for obtaining an extremum of the functlonal (1.7) when conditions
(1.1) are fulfilled. This is a problem with one-sided variations.

Applying to the given case & theorem from [4] generalized to an (n+1)
dimensional space, we get the following result.

Theorem 1.1 . If acurve I'{g;(t)(i=1,...,n)} which gives an
extremal value to the integral (1.7) among the curves ¢;(t)(i=1,. c o ),
belonging to the c¢losed domain (1.1), and connecting two given points and
such that the g¢,°{(¢) (¢ = 1,...,n) are continuous, except, may be, at the
points A, where T goes froma domain @,{gy>0 (k=m-1,...,n)} to the
boundary and from the boundary D, (o =0, kEJa} to the boundary
@y {9, =0, k€ Jg}, then

1) the pieces of the curve I , belonging to the domain &, are extre-
mal for the integtal S5 , l.e. satisfy Euler equations

d oL oL .
dtaqi'_—ﬁq,-"_o (i=1,...,n)
2) The pieces of the curve belonging to the boundary @, yleld the
extregla of the problem on the arbltrary extremum S for the comxilitlons
7, =0, kEJ,, i.e. satisfy Equations ?1.2). Furthermore, at each point of
the boundary, in the case of a nonpositive first varlation &S , the condi~
tion (1.3) must be satisfied;
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3) At the points where I passes from the domain @, to the boundary
or from the boundary ¢_ to the boundary @, the condition (1.5) and the
relations @

n
oL B .
@h—@k—g(aﬁkwu—qw=0
are valid. =1
If we eliminate the case in which the points A, are corner points of
the sought curve, the condition (3) can be replaced by the following condi-
tion: the curve T possesses a continuocusly rotating tangent, i.e. the

g; @ (i=1,..., n) are continuous functions of ¢ . Thus the sufficiency
is proved.

Note . Let us investigate the nature of the extremum of the action
S for systems with one~sided constraints. It can be stated, that if the
real path of the system in the interval (¢,, T) ¢onsists of sections belong-

ing to the domain &, and of the boundaries <Da, (DB’ ..+« then, on such a path
there will not be any local maxima nor minima of the action § . (We con~
sider that the sections which lie on the boundaries (Da, O, ... are not

extremas of the integral § , since if the contrary were true the constraints
{(1.1) could be completely ignored).

In fact, by comparing the real path with the devious paths for which con-
dition (1.10) is fulfilled, we find that &5 = O . Purthermore, by virtue
of the positive~definiteness of the kinetic energy, the Legendre condition
of positiveness of the second order variation of the motion 6?5 is always
fulfilled. This proves that on the real path the maximum of § is never
obtained. On the other hand, comparing the real path and the devious paths
which coincide with the real path in the domain ¢, and for which on the
boundaries @,, @y, ... 8¢, >0, k€ J,, kEJp ... Wwe get 85< 0.,

Thus, it is possible to choose devious paths satisfying the conditions
(1.1) and (1.6) such that the value of the action S 1s not smaller than
on the real path, and others such that the value of the action § 1s smaller
than on the real path.

2., We have considered above the variational principle of Hamilto-Ostro-
gradskii valid only for holonomic systems with potential forces. However, in
mechanies this principle has & more general meaning. It 1s also applicable
to systems with nonpotential forees. The principle consists in the fact that
on the real path which is composed, as before, of sections of different types,
the integral

T n n
R = S [GT 4~ v§1 (X 0z, 4+ Y by, 4 Z,8z, )] dt, T = _;_ Z m, (m, 24y, 2+ 2,9

o v=1

is not positive for any values &z, 0y,, 8z, infinitely close to the =z, (t),

y,(t), z,(t), which correspond to the real path and become equal to zero for i,
and T which determine in the interval %to, T) the motions which are admis-
sible by one-sided constraints. This integral is equal to gzero for the non

disengaging motions [2] (f11fillment of the condition (1,10)). Here ¥, 2

(ve 1,..., n) are the orthogonal coordinates of the points of the mecha.nic’ai‘
system; T 1s the kinetlc energy; X ,Y , Z, are the acting forces; m,

the mass of the vwth point.

Let us prove this principle. We notice that

n

8T = Y m, (x,8z, +y, '8y, + 2,02,)

v=1

Taking into account the presence of ¥ sections of motion and integrating
by parts; we bring 6’R to the form
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N+1 n taq

P G I Y . ‘ N ‘
R = L 2 mg, S, - my Oy, -t om 3, 85)) o
s 0 v 1

N1 ts +1 TL N
- B S {.\_} (Y, = ma,”) e, 4- (Y, —my, )by, + (Z,—m ") bz,] Jl dt

$=10 ts v -1

The first term of this sum is equal to zero since the 6xv,5yv,55v are
equal to zero for t, and T and on the basis of the general impulse theory
which, in the presen% case, when the only impulses acting on the system are
the constraint impulses, has the form [2]

n
2 [A(mz,) 8%, -~ A(myy, )8y, + A (m,z,)8z,] =0

VEES |

where the A (myz)), A (my,), A(mz)) ape the differences between the values
max,, my,, m,z" before and after the impulse. From d'Alembert-Lagrange's
principle for systems with one-sided constraints

>_] l(‘\'v - m’vxv“) 61'\, =+ (Yv - m’vyv“} 6yv - (Zv - nlvzv“) 6zvl < 0
v--1

(here the sign of the equality is valid for the nondisengaging possible
motions), we get 8’R <0 and § 'R = 0 for the nondisengag possible
motions which was to be proved.

The author wishes to thank V.V.,Rumiantsev for his interest in this paper.
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