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Holonomic systems with two-sided constraints repreeent a well-known section 
of analfiia1 mMi@nios whereas holonoaric ~8teB@ with one-sided (or nonhold- 
In& releMSDg) oonstralnts have not been suftioiently lnvestb+ted. In 
this paper the Hanllton-O&r 

T 
adrkll integral variational prinoiple la 

establlohed for holonolrie sys ems with one-slded constraints and 1s proved 
to be necessary and sufficient. 

1. We shall consider a holonomlc me&anlcal system under the action of 
potential foraes. We shall as8ume that the generalized aoordinates Q, , . . . ,q, , 

Q,* 3 ***rg8 are chosen suuh that the one-sided dons%ralnt$ applied to the 
s&em are determined as follows: 

Q ,+l>/o,...,Qn>o (I.11 

such a choice of the generalized coordinates Is always possible. 
We shall oonslder the real path of the system 4 (t),..., q,(t) during 

the interval of time [to, fl . In the lacrst general Saser this p*th oan oon- 
slat of bbothna of P + 1 different types, where r Is the nuder of dlrfer- 
ant oombinatlons of the inbiaeo m+l,..., n which Is obviously eQua1 to 
2’. . 

‘phe type of the motion on a section, depend6 on whleh of the ooordlnatea 
(1.1) are equal to sero on that seotion. We shall assign ~8 i&ex to eaah 
possible type of the se&Ions or metion. wlwm the in(kx xm ts sLv*n to 
the se&,tioninwhiahtil q~>O(k=m+~,...,@. ToemhawR?BOr a Cor- 
responds the totr;litJr 3,. OZ the Mlces m + 1,. .., n, 
qr = 0 on each given section of tJpc a . 

swh Uuf lf kE J,, 

It IS amumed that during the interval of time [to, 
from one eeation of potion to another a finLte aumber 
L-T+C'bsaw(rurge sunation. The eqmtions of 
a section of type a hwe the form 

d C3L aL. 
--.-~_ ~- 
dt 3qj aqj -O 

i = 1, . . .) I)1 
i does not belong to Jcl) 

with the condition 

-‘d 8L _ t+L 
---y-------_~hh- 
dt aqk hk 

(k E JJ 

qk = 0 (k E J,) 

(1.2) 
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hk. -> 0 (k E J,) (1.3) 

where a dot represents differentiation with respect to t - 
The transition from one section of motion to another can be of two types: 

with or without an impulse. An lmpulse can occur, If a system which did not 
have some one-sided constraint again acquires one. For instance, let the 
system pass at time t, from a section of type zero to a section of the first 
type for which g.+1= 0 . If ql;LtI (t,) > 0, there won’t be an impulse; on the 
other hand If q,,,+ (t,) < 0, there will be an impulse [ 11: the ve~ocltles 

have a dlscontlnulty whereupon q*,+l takes on lnstan- 
aneously a nonnegative value. 

Thus, when we pass from one section of motion of type Q to another of 
type B the variations of the velocities 
ous or have a dlscontlnul$y. 

e; (t I 1, . . . . n) can be contlnu- 
If at the ins ant of the Impulse the system 

leaves the constraint 
qk=O, kEJg-JaxJRt 

qk = 0, k E J, - J, x J, and acquires the constraint 
then at the Instant of the Impulse (“) 

6qk = 0 (k E Js) ’ (1.4) 

The values of the velocities after the impulse satisfy the equations of 
the impulse theory 

(e),= (%I1 ($ do:s’&nkelong to JB) (1.5) 

The Indices 0 and 1 In (1.5) show that In z we have the values of 
the velocities before and after the Impulse. 

We shall assume that the constrainta applied at the time of the. Impulse 
are retained, then there Is a sufficient number of Equations (1.5) to deter- 
mine the velocities after the Impulse. If this were not true, It would be 
necessary to make complementary assumptlons on the behavior of the system 
after the Impulse [ 23 . 

Together with the real path, we shall consider the totality of the devious 
paths, conslstlng of configurations permissible by the constraints and lnfl- 
nltely close to the real path [3] 

w(t) + b(t)9 * - -9 %I(4 + ba(4 

where the 6qj (i = 1, . . ., nz) and those of the 6qk (k = m + 1.. . ., n), for which 
on the real path q * 0 are aibllmz%ly chosen, and 6qk >, 0’ for the qr which 
are zero on the re ai pa&. Among the totality of the devious paths we shall 
choose those which coincide with the real path at Instants t,, and T ln 
such a way that 

6qi (to) = 0, 6q+ (T) = 0 (i = 1, . . ., n) (1.6) 

Let’s consider the Hamlltonlan action Integral for the Interval [t,, T] 
T 

(1.7) 

We shall compute the increment of the action S when we pass from the 
real path to a devious path with the linear approximation accuracy with 
respect to bq, , bq;, I.e. we compute the variation 

(1.8) 
to s=o t, 

where the t,,..., t,, are the time instants at which the transitions from 
one section of motion to the other occur, whereupon t = T . Since the 
instants at which the system passes from one section o%+&.lon to another 
can be varied, we should ap 
nonsynchronous variation [3 P 

ly to the integrals ln (1.8) the formula of thg 

l ) A x B denotes the intersection of the ensemble A , B . 
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since the time (2’ - tb ) is fixed. We have 

Nir is+1 _ 7% 

6s = 2 s 1 x (& hi’ -I- $i hi)] a 
s=ll 1 8 i-1 

Integrating by parts we get 

Is+1 x+1 n hbl 

I.9 
+ x 2 s (-g$--#) &?idt 

s=o i=l ( i 
S 

The first term of this sum Is equal to zero on the basis of Equations 
(1.4), (1.6) and 1mpuIse equations (1.5). 

Taking Into conslderatlon, that the sections of the motion have dlfferent 
types, we get 

r N-1-1 tSt1 

es=- 2 2 x 1 hk6qkdt 
a=0 a=0 k&l, 1 s 

Since hk >, 0, Sqh >O (k E J,), then 

8s < 0 f m 

If the real path on all Its sections Is comparable to devious paths of 
almilar types, I.e. If the conditions 

89, = 0 Ik E J,) (1,iO) 

are fulfilled, we find &s = 0. 

Thus the necessity of the following principle Is proved. The first varl- 
atlon of the Hamlltonlan action integral Is nonposltlve, If the devious paths 
colncldlng with the real path at the initial and final instants of time t, 
and 2’ and for which the conditions (1.1) are fulfilled are comparable to 
the real path. The #mmlltonlan action integral has a strtion;rcr?pv&jaks if we 
can also c-are to the real path the devious paths which satisfy the condl- 
tlon (1.10). 

In order to prove that this principle Is sufficient we shall deduce from 
It the equations of motion. The problem consists ln find the .n@cessary 
conditions for obtaining an extremum of the funatiWa1 wken conditions 
(1.1) are fulfilled. This Is a problem with one-sided variations. 

Applying to the given case a theorem from 141 generalized to an (rl + 1) 
dimensional space, we get the following result. 

T h e o P e m 1.1 . If a Curve r {qi(t)(i = 1, . , ., n)) which gives an 
extremal value to the Integral ZUIIO~ the curves Qi (t) (i = 1, . . ., n), 
belonging to the closed domain 
such that the Q ;( t ) ( t = 1, . 

and connecting two given points and 
continuous, except, may be, at the 

points A,, where r goes from a domain OO{qk>O (k==m+i, . . ..n)) to the 
boundary and from the boundary CD~ {qk = 0, k EJ,} to the boundary 
@p (Qk = 0, k E Jfi3’ then 

1) the pieces of the curve r , belonging to the domain Q0 are eXtre- 
ma1 for the integtial S , I.e. satisfy Euler equations 

d BL aL 
--‘-;- - 
dt aqi 

-z== 
aqi 

o 
(i -; 1, . . .) n) 

2) The pieces of the curve belonging to the boundary @a, yield the 
extre of the problem on the arbitrary extremum 
gr = rkeJ,, 

S for the condltlona 
I.e. satisfy Equatfons (1.2). Furthermore, at each point of 

the boundary, In the case of a nonposltlve first variation i5S , the condl- 
tlon (1.3) must be satisfied; 
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3) At the points where r passes from the domain Q,, to the boundary 
or from the boundary Q a to the boundary QB, the condition (1.5) and the 
relations 

fL)l - (L)o - $j ( $)o (Q’S - 9’iO) = 0 

are valid. 
i=l 

If we eliminate the case in which the points A, are corner points of 
the sought curve, the condition (3) can be replaced by the following condl- 
tlon: the curve I’ possesses a continuously rotating tangent, i.e. the 
q’i (t) (i = 1, . . ., n) are continuous functions of t . Thus the sufficiency 
Is proved. 

Note . Let us Investigate the nature of the extremum of the action 
s for systems with one-sided constraints. It can be stated, that if the 
real path of the system In the Interval (t,, T) conslsts of sections belong- 
lnu to the domain C and of the boundaries Q_. Q,,. . . ., then. on such a Dath 
th&e will not be a$ local maxlma nor minlma “df i%e action i . (We con: 
sider that the sections which lie on the boundaries QD,, Q,,. . . ., are not 
extremas of the Integral S , since If the contrary we& t”rme the constraints 
(1.1) could be completely ignored). 

In fact, by comparing the real path with the devious paths for which con- 
dition (1.10) Is fulfilled, we find that bS I 0 . -thermore, by virtue 
of the positive-definiteness of the kinetic energy, the Legendre condition 
of positiveness of the second order variation of the motion baS Is always 
fulfilled. This proves that on the real path the inaxlm~ of s Is never 
obtained. On the other hand, comparing the real path and the devious paths 
which coincide with the real path in the domain @,, and for whkch on the 
boundaries Qa, Qo,. . . 69,. 0, kE J,, k E Jp, . . . we get 6s < 0 . 

Thus, it is possible to choose devious paths satisfying the conditions 
(1.1) and (1.6) such that the value of the action s Is not smaller than 
dn the reai path, and others such that the value of the action S is smaller 
than on the real path. 

2. We have oonsldered above the variational principle of Iiamllto-Ostro- 
gradskll valid only for holonomlc systems with potential foroes. INeVer, in 
mechanics this principle has a more general meaning. It is also applicable 
to systems with nonpotential forces. The principle collblsts In the fact that 
on the real path which is composed, as before, of sections bf different types, 
the Integral 

&I?=[ [*T+ i 
“=l 

(X”% + Y$Y, + Z&, ,] d4 
to 

T = $ $J my (my’s + y;a + zig) 

“=I 

is not positive for any values sx,, 6Y,, 6z,, 
Y”(t), z”(t), which correspond to the real 

InfInItely close to the xv(t), 

P 
ath and become equal to zero for to 

and T which determine In the Interval t,, T) the motions which are admls- 
sible by one-sided constraints. This Integral Is equal to zero for the non- 
disengaging motions [ 2) (filfillment of the condition (1.10)). Here CC”, y z 

) are the orthogonal coordinates of the points of the mechar&& 
Is the kinetic energy; 
the vth point. 

Xv, Y,, 2, are the acting forces; m, 

Let us 

by ~~ 

Prove this principle. We notice that 

n 
&T = x m, (r,‘GzV + y,‘Sy, + z,‘Sz,) 

“=I 

into account the presence of N sections of motion and integrating 
we bring 6’~ to the form 
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The first term of this sum Is equal to zero since the 6x... &I/.,. a;.. are 
equal to zero for t and 

In. the presen? case, 
T 

which, 
and tin the basis of the generai'ln&se'theory 

when the only impulses acting on the system are 
the constraint Impulses, has the form [23 

where the. A (tqcy'), A (wJ,'), A (q--;) are the differences between the values 
mvxv , h~,?i., , rnyz, ' before and after the lmpulae. 
principle for systems with one-sided constraints 

From d'Alembert-Lagrange's 

(here the sign of the equality Is valid for the nondlseng 
motions), we get 6'R < 0 and S'R = 0 for the 
motions which was to be proved. 

The author wishes to thank V.V.FWmlantsev for his interest In this paper. 
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